马铃薯脯氨酸转运体StProT3的序列结构及表达分析Sequence Structure and Expression Analysis of Potato Proline Transporter StProT3
王明,王万兴,何长征,胡新喜,熊兴耀,秦玉芝
摘要(Abstract):
依据马铃薯转录组数据,鉴定马铃薯脯氨酸转运体(Proline transporter,ProTs)在逆境中的作用。以马铃薯GS393(Solanum commersonii-LZ3.4-Wisconsin, United States)为材料,采用实时荧光定量PCR对StProT3基因在不同组织及激素、重金属、盐、干旱和低温处理下的表达模式进行分析。该基因CDS长度为1 317 bp,编码438个氨基酸。序列比对显示与SlyProT3有96%的相似性,因而命名为StProT3(NCBI登陆号为MH027990.1)。StProT3基因在马铃薯根、茎、叶、匍匐茎以及块茎中均有表达,其中根中表达量最高;重金属(氯化汞、氯化镉、氯化铜、氯化铝)、干旱、盐渍、激素(IAA、GA3、6-BA)处理能诱导该基因表达,而低温和ABA处理则抑制该基因表达,这表明StProT3基因参与了马铃薯的激素信号传导以及非生物胁迫响应。
关键词(KeyWords): 马铃薯;脯氨酸转运体;实时荧光定量;非生物胁迫
基金项目(Foundation): 国家自然科学基金项目(31371683)
作者(Author): 王明,王万兴,何长征,胡新喜,熊兴耀,秦玉芝
DOI: 10.19918/j.cnki.1672-3635.2021.02.003
参考文献(References):
- [1]宋帅杰.抗蒸腾剂和保水剂对雷竹林抗高温干旱生理的影响[D].杭州:浙江农林大学,2015.
- [2]姜波,张晓莉,任珂,等.马铃薯不同品种抗旱评价及生化指标[J].中国马铃薯,2017,31(2):71-76.
- [3]Szabados L,SavouréA.Proline:a multifunctional amino acid[J].2010,15(2):89-97.
- [4]Kemble A R,Macpherson H T.Liberation of amino acids in perennial rye grass during wilting[J].The Biochemical Journal,1954,58(1):46-49.
- [5]Hadi F,Fuller M P.Chemically induced mutants of Brassica oleracea var.botrytis maintained stable resistance to drought and salt stress after regeneration and micropropagation[J].American Journal of Plant Sciences,2013,4(3):498-507.
- [6]彭志红,彭克勤,胡家金,等.渗透胁迫下植物脯氨酸积累的研究进展[J].中国农学通报,2002,18(4):80-83.
- [7]余光辉.水分胁迫下假俭草脯氨酸累积的ABA,Ca~(2+)调节[D].广州:华南师范大学,2003.
- [8]Girousse C,Bournoville R,Bonnemain J L.Water deficit-induced changes inconcentrations inproline andsome other amino acids in the phloem sap of alfalfa[J].Plant Physiology,1996,111(1):109-113.
- [9]Rentsch D,Hirner B,Schmelzer E,et al.Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant[J].Plant Cell,1996,8(8):1437-1446.
- [10]Verslues P E.Proline accumulation in Maize (Zea mays L.)primary roots at low water potentials.II.metabolic source of increased proline deposition in the elongation zone[J].Plant Physiology,1999,119(4):1349-1360.
- [11]Ueda A,Shi W,Sanmiya K,et al.Functional analysis of saltinducible proline transporter of barley roots[J].Plant and Cell Physiology,2001,42(11):1282-1289.
- [12]尹智宇,郭华春,封永生,等.干旱胁迫下马铃薯生理研究进展[J].中国马铃薯,2017,31(4):234-239.
- [13]陈托兄,张金林,陆妮,等.不同类型抗盐植物整株水平游离脯氨酸的分配[J].草业学报,2006,15(1):36-41.
- [14]Grallath S,Weimar T,Meyer A,et al.The At Pro T family.Compatible solute transporters with similar substrate specificity but differential expression patterns[J].Plant physiology,2005,137(1):117-126.
- [15]陈颖,王婷,华学军.脯氨酸转运相关基因的研究进展[J].植物学报,2018,53(6):754-763.
- [16]Lee B R,Jin Y L,Avice J C,et al.Increased proline loading to phloem and its effects on nitrogen uptake and assimilation in water-stressed white clover (Trifolium repens)[J].New Phytologist,2009,182(3):654-663.
- [17]Shen Y G,Zhang W K,Yan D Q,et al.Overexpression of proline transporter gene isolated from halophyte confers salt tolerance in Arabidopsis[J].Acta Botanica Sinica,2002,44(8):956-962.
- [18]Akihiro U,Yuko Y Y,Tetsuko T.Salt stress enhances proline utilization in the apical region of barley roots[J].Biochemical and Biophysical Research Communications,2007,355(1):61-66.
- [19]Liu X,Bush D R.Expression and transcriptional regulation of amino acid transporters in plants[J].Amino Acids,2006,30(2):113-120.
- [20]Di Martino C,Pizzuto R,Pallotta ML,etal.Mitochondrial transport in proline catabolism in plants:the existence of two separate translocatorsinmitochondriaisolatedfromdurumwheatseedlings[J].Planta,2006,223(6):1123-1133.
- [21]Igarashi Y,Yoshiba Y,Takeshita T,et al.Molecular cloning and characterization of a cdna encoding proline transporter in rice[J].Plant and Cell Physiology,2000,41(6):750-756.
- [22]王洪春.植物生理学专题讲座[M].北京:科学出版社,1987:336-341.
- [23]Kishor P B K.Salt stress in cultured rice cells:effects of proline and abscisic acid[J].Plant Cell and Environment,1989,12(6):629-633.