‘鄂马铃薯3号’对干旱胁迫早期响应的转录组分析Transcriptome Analysis of Early Response of 'Emalingshu 3' to Drought Stress
刘圣宣,程云霞,刘腾飞,宋波涛
摘要(Abstract):
马铃薯通常被认为是干旱敏感性作物,由全球气候变化引起的干旱频发严重威胁了马铃薯的可持续生产。破译马铃薯的干旱应答机制,解析马铃薯干旱应答的核心因子,将有助于破解因干旱导致的马铃薯种植限制。基于此,研究旨在通过分析栽培品种应对干旱胁迫的早期响应过程,获得马铃薯早期干旱应答的关键候选基因。将‘鄂马铃薯3号’试管苗通过快速干旱胁迫处理,可在6 h出现明显的干旱胁迫表型,含水量相较于对照前也显著降低。不同干旱处理时间点的转录组分析结果显示,差异基因数量随着处理时间的延长而增加。2个分别编码转录因子GATA和YABBY的基因在干旱处理6 h后表达量极显著降低,可能为马铃薯干旱调控的负向因子。3个胚胎发育晚期富集蛋白(Late embryogenesis abundant,LEA)基因的表达受到干旱胁迫的剧烈诱导可作为潜在的干旱胁迫Marker基因。脱落酸(Abscisic acid,ABA)信号途径中的蛋白激酶StSnRK2.4和StSnRK2.8以及转录因子StAREB2受到干旱诱导最为剧烈,可能是ABA信号途径上响应干旱胁迫过程中的重要组分。
关键词(KeyWords): 马铃薯;干旱胁迫;转录组分析;转录因子;ABA信号途径
基金项目(Foundation): 国家自然科学基金青年科学基金项目(32101781);; 国家农业(马铃薯)产业技术体系岗位科学家项目(CARS09-P07);; 湖北省第三批现代农业产业技术体系项目(HBHZD-ZB-2020-005)
作者(Author): 刘圣宣,程云霞,刘腾飞,宋波涛
DOI: 10.19918/j.cnki.1672-3635.2021.06.001
参考文献(References):
- [1] FAO. faostat[DB/OL]. http://www.fao.org/faostat, 2018.
- [2] Lesk C, Rowhani P, Ramankutty N. Influence of extreme weather disasters on global crop production[J]. Nature, 2016, 529(7584):84-87.
- [3] Watkinson J I, Hendricks L, Sioson A A, et al. Tuber development phenotypes in adapted and acclimated, drought-stressed Solanum tuberosum ssp. andigena have distinct expression profiles of genes associated with carbon metabolism[J]. Plant Physiology and Biochemistry, 2008, 46(1):34-45.
- [4] Huang G T, Ma S L, Bai L P, et al. Signal transduction during cold, salt, and drought stresses in plants[J]. Molecular Biology Reports, 2012, 39(2):969-987.
- [5] Van Loon C D. The effect of water stress on potato growth,development, and yield[J]. American Potato Journal, 1981, 58(1):51-69.
- [6] Jefferies R A. Responses of potato genotypes to drought. I. Expansion of individual leaves and osmotic adjustment[J]. Annals of Applied Biology, 1993, 122(1):93-104.
- [7] Zhang N, Liu B, Ma C, et al. Transcriptome characterization and sequencing-based identification of drought-responsive genes in potato[J]. Molecular Biology Reports, 2014, 41(1):505-517.
- [8] Gong L, Zhang H, Gan X, et al. Transcriptome profiling of the potato(Solanum tuberosum L.)plant under drought stress and water-stimulus conditions[J]. PLoS One, 2015, 10(5):e0128041.
- [9] Sprenger H, Kurowsky C, Horn R, et al. The drought response of potato reference cultivars with contrasting tolerance[J]. Plant, Cell and Environment, 2016, 39(11):2370-2389.
- [10] van Muijen D, Anithakumari A M, Maliepaard C, et al. Systems genetics reveals key genetic elements of drought induced gene regulation in diploid potato[J]. Plant, Cell and Environment, 2016,39(9):1895-1908.
- [11] Pieczynski M, Wyrzykowska A, Milanowska K, et al. Genomewide identification of genes involved in the potato response to drought indicates functional evolutionary conservation with Arabidopsis plants[J]. Plant Biotechnology Journal, 2018, 16(2):603-614.
- [12] Moon K B, Ahn D J, Park J S, et al. Transcriptome profiling and characterization of drought-tolerant potato plant(Solanum tuberosum L.)[J]. Molecules and Cells, 2018, 41(11):979.
- [13] Chen Y, Li C, Yi J, et al. Transcriptome response to drought,rehydration and re-dehydration in potato[J]. International Journal of Molecular Sciences, 2019, 21(1):159.
- [14] Yang X, Liu J, Xu J, et al. Transcriptome profiling reveals effects of drought stress on gene expression in diploid potato genotype P3-198[J]. International Journal of Molecular Sciences, 2019, 20(4):852.
- [15] Patro R, Duggal G, Love M I, et al. Salmon provides fast and biasaware quantification of transcript expression[J]. Nature Methods,2017, 14(4):417-419.
- [16] Pham G M, Hamilton J P, Wood J C, et al. Construction of a chromosome-scale long-read reference genome assembly for potato[J]. GigaScience, 2020, 9(9):100.
- [17] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J].Genome Biology, 2014, 15(12):1-21.
- [18] Hand S C, Menze M A, Toner M, et al. LEA proteins during water stress:not just for plants anymore[J]. Annual Review of Physiology, 2011, 73:115-134.
- [19] Chen Y, Li C, Zhang B, et al. The role of the late embryogenesis-abundant(LEA)protein family in development and the abiotic stress response:a comprehensive expression analysis of potato(Solanum tuberosum)[J]. Genes, 2019, 10(2):148.
- [20] Shin D, Moon S J, Han S, et al. Expression of StMYB1R-1, a novel potato single MYB-like domain transcription factor, increases drought tolerance[J]. Plant Physiology, 2011, 155(1):421-432.
- [21] Liu F, Jensen C R, Shahanzari A, et al. ABA regulated stomatal control and photosynthetic water use efficiency of potato(Solanum tuberosum L.)during progressive soil drying[J]. Plant Science,2005, 168(3):831-836.
- [22] Bai J, Mao J, Yang H, et al. Sucrose non-ferment 1 related protein kinase 2(SnRK2)genes could mediate the stress responses in potato(Solanum tuberosum L.)[J]. BMC Genomic Data, 2017, 18(1):41.
- [23] Liu T, Zhou T, Lian M, et al. Genome-wide identification and characterization of the AREB/ABF/ABI5 subfamily members from Solanum tuberosum[J]. International Journal of Molecular Sciences, 2019, 20(2):311.